Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture
نویسندگان
چکیده
The use of antibiotic agents as growth promoters was banned in animal husbandry to prevent the selection and spread of antibiotic resistance. However, in addition to antibiotic agents, heavy metals used in animal farming and aquaculture might promote the spread of antibiotic resistance via co-selection. To investigate which heavy metals are likely to co-select for antibiotic resistance in soil and water, the available data on heavy metal pollution, heavy metal toxicity, heavy metal tolerance, and co-selection mechanisms was reviewed. Additionally, the risk of metal driven co-selection of antibiotic resistance in the environment was assessed based on heavy metal concentrations that potentially induce this co-selection process. Analyses of the data indicate that agricultural and aquacultural practices represent major sources of soil and water contamination with moderately to highly toxic metals such as mercury (Hg), cadmium (Cd), copper (Cu), and zinc (Zn). If those metals reach the environment and accumulate to critical concentrations they can trigger co-selection of antibiotic resistance. Furthermore, co-selection mechanisms for these heavy metals and clinically as well as veterinary relevant antibiotics have been described. Therefore, studies investigating co-selection in environments impacted by agriculture and aquaculture should focus on Hg, Cd, Cu, and Zn as selecting heavy metals. Nevertheless, the respective environmental background has to be taken into account.
منابع مشابه
Identification and characterization of a Pb, Cu and antibiotic resistant bacteria from soil of industrial wastewater ground
Industrial effluents consist many pollutant and heavy metals. Bacteria isolated from industrial west water ground may have potential to tolerate heavy metal. In this study we isolate a Citrobacter sp. which can resist heavy metal like Cu and Pb. Slurry from industrial west water ground was collected from 22.0663 N, 88.1041 E. The heavy metal content and other parameters of soil were estimated. ...
متن کاملIdentification and characterization of a Pb, Cu and antibiotic resistant bacteria from soil of industrial wastewater ground
Industrial effluents consist many pollutant and heavy metals. Bacteria isolated from industrial west water ground may have potential to tolerate heavy metal. In this study we isolate a Citrobacter sp. which can resist heavy metal like Cu and Pb. Slurry from industrial west water ground was collected from 22.0663 N, 88.1041 E. The heavy metal content and other parameters of soil were estimated. ...
متن کاملInvestigating the effects of plant growth promoting bacteria and Glomus Mosseae on cadmium phytoremediation by Eucalyptus camaldulensis L.
This research aims to study the effect of Mycorrizal fungus and Plant-Growth-Promoting Bacteria (PGPB) on Cadmium (Cd) uptake by one-year-old Eucalyptus Camaldulensis seedlings. The treatments have involved three levels of heavy metal (0, 30, and 60 mg/kg) for Cd, and three bacterial levels (no bacteria (B0), Bacillus (Ba105), and Pseudomonas (Ps36, Ps448)), inoculated with mycorrhizal fungus G...
متن کاملInvestigating the effects of plant growth promoting bacteria and Glomus Mosseae on cadmium phytoremediation by Eucalyptus camaldulensis L.
This research aims to study the effect of Mycorrizal fungus and Plant-Growth-Promoting Bacteria (PGPB) on Cadmium (Cd) uptake by one-year-old Eucalyptus Camaldulensis seedlings. The treatments have involved three levels of heavy metal (0, 30, and 60 mg/kg) for Cd, and three bacterial levels (no bacteria (B0), Bacillus (Ba105), and Pseudomonas (Ps36, Ps448)), inoculated with mycorrhizal fungus G...
متن کاملWater exploitation of Karoon River for fish culturing through monitoring and simulation systems
Heavy metal pollution dispersion simulation in rivers and predicting spatial and temporal variations of pollutants can be used to determine the precise place and to schedule water withdrawal time for drinking, agriculture, aquaculture and ecosystem studies. To study the movement of heavy metal pollution through Karoon flow model, MIKE 11 was employed fpr simulation of the flow model of Karoon R...
متن کامل